人民日报出版社主管 人民周刊杂志社主办

010-65363526rmzk001@163.com
首页 > 栏目 > 科学 > 正文

中国科学院青岛生物能源与过程研究所:

人工智能预测光伏发电出力取得新进展

廖洋 尤琪 孔凤茹    2024-07-22 12:53:38    中国科学报

随着全球范围内光伏装机容量的持续快速增长,光伏发电易受多种气象因素影响所表现出的显著间歇性与高度随机性,对其并入电网从而影响电力系统稳定性的情况日益凸显,成为亟待解决的关键问题。因此,精确预测光伏发电的输出能力,不仅是电力生产高效规划与资源合理分配的前提,也是确保混合电力系统整体可靠性、优化电网调度策略及维护电网稳定运行不可或缺的关键环节。

近日,中国科学院青岛生物能源与过程研究所泛能源大数据与战略研究中心首次将光伏物理建模关键步骤生成的中间变量作为输入的一部分以进行数据增强,提出了一个基于Transformer的全新模型——并行时间特征信息提取网络PTFNet。相关研究成果发表于《应用能源》。

PTFNet模型利用基于卷积交互结构的时间依赖提取模块和基于自注意力机制的特征间依赖提取模块,用于拟合输入数据的时间特性和特征间关联特性,并通过多层次的堆叠实现对信息的深层提取。提取的时间依赖和特征间依赖用于进行最终的预测。

实验结果表明,PTFNet模型取得了最佳的整体预测能力,在15分钟级别的数据上,该模型对未来36h光伏发电出力预测的均方根误差降低9.1%-26.8%,决定系数达到0.93。此外,该模型预测结果在电网运营商所需要的准确性指标为92.82%,超过其他同类模型。

本研究通过巧妙融合自然科学研究范式和人工智能研究范式建立了传感器测量特征,加强了气象预报特征与光伏功率特征之间的深度关联,实现了对多源数据的充分利用,显著提升了光伏功率预测的准确性,对人工智能从非解释性研究向可解释性研究进步意义深远。

该工作由青岛能源所泛能源大数据与战略研究中心主任田亚峻研究员主持完成,得到了山东能源研究院、山东省自然科学基金、青岛博士后资助项目和中国工程院院地合作项目的支持。

(责编:赵珊)

相关热词搜索:

上一篇:“丰富的创新要素帮助我们在全球市场赢得先机”
下一篇:机器人工程技术人员,让机械手听话打螺丝

人民周刊网版权及免责声明:

1.凡本网注明“来源:人民周刊网”或“来源:人民周刊”的所有作品,版权均属于人民周刊网(本网另有声明的除外);未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品;已经与本网签署相关授权使用协议的单位及个人,应注意作品中是否有相应的授权使用限制声明,不得违反限制声明,且在授权范围内使用时应注明“来源:人民周刊网”或“来源:人民周刊”。违反前述声明者,本网将追究其相关法律责任。

2.本网所有的图片作品中,即使注明“来源:人民周刊网”及/或标有“人民周刊网(www.peopleweekly.cn)”“人民周刊”水印,但并不代表本网对该等图片作品享有许可他人使用的权利;已经与本网签署相关授权使用协议的单位及个人,仅有权在授权范围内使用图片中明确注明“人民周刊网记者XXX摄”或“人民周刊记者XXX摄”的图片作品,否则,一切不利后果自行承担。

3.凡本网注明“来源:XXX(非人民周刊网或人民周刊)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

4.如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:010-65363526 邮箱:rmzk001@163.com