美国国家标准与技术研究院(NIST)和科罗拉多大学博尔德分校联合成立的美国天体物理联合实验室(JILA)的科学家,成功开发出了迄今已知最精确的原子钟。这款原子钟不仅能精准计时,还有助在广阔的空间范围内进行精准导航,并可搜索新粒子。相关论文已经被最新一期《物理评论快报》杂志接收。
物理学家组织网在本月稍早时间报道中指出,随着原子钟精度的持续提升,它们将在引力波探测、暗物质探测等领域“大显身手”,有望帮助科学家以前所未有的精确度测试广义相对论等基本理论。而对于那些原子钟建造师来说,他们不仅在开发更好的时钟,更是在打造一把把揭示宇宙奥秘的“钥匙”,为未来的前沿技术奠定基础。
精度“更上一层楼”
当原子从一个能量态跃迁至更低能量态时,会释放出电磁波。这种不连续的电磁波频率,即为跃迁频率。同一种原子的跃迁频率是一定的。对于原子跃迁时辐射出来的电磁波频率,原子钟可把其作为一种节拍器来计时。也就是说,原子钟通过测量原子的跃迁频率,实现精准计时。
最早的原子钟使用微波波段照射原子,使原子发生跃迁,但光学频率远高于微波频率,更高频率也意味着更高的计时精度。
2022年,JILA物理学家叶军等人通过使用激光捕获、冷却和探测原子,研制出了当时最精确的原子钟,其如果运行150亿年,误差不到一秒。
为进一步提升原子钟的精度,在最新研究中,叶军等人使用更浅、更温和的激光“网”,捕获了成千上万个原子。这大大减少了两个主要的误差来源:捕获原子的激光产生的效应,以及当原子紧密堆积相互碰撞产生的效应。在此基础上,他们研制出了有史以来最精确的原子钟。这款原子钟如果运行300亿年,误差仅为一秒。
在更小尺度测量广义相对论
高精度原子钟可能会对科学研究产生巨大影响。
叶军表示,他们新研制出来的原子钟非常精确,即使在微观尺度上,也能探测到广义相对论等理论预测的微小效应。
广义相对论认为,由于物质的存在,空间和时间会发生弯曲。其中一个关键预测是:时间本身受到引力的影响,而且引力场越强,时间过得越慢。2010年,NIST物理学家通过比较2个相距33厘米的原子钟验证了广义相对论。
叶军等人在《自然》杂志发表的论文中也指出,他们利用该原子钟已经证实,爱因斯坦的广义相对论所预测的时间膨胀在毫米尺度上是正确的——两个微小的原子钟,相隔仅一毫米,也会以不同速度运转。
这种在微观尺度上观察广义相对论效应的能力,有望帮助物理学家将量子力学与广义相对论统一起来。量子力学在极小尺度上描述物质,广义相对论则可在极大的宇宙尺度上预测物体的行为。原子钟能够探测到细小的引力效应,为广义相对论和量子理论“联姻”提供了可能性。
更精确的太空导航
更精确的原子钟还可以实现更精确的太空导航。
随着人类不断深入太阳系,原子钟将需要在很远距离保持精确计时。所谓失之毫厘,谬以千里,计时中极其微小的错误会造成导航错误,从而对整个探索活动产生巨大影响。叶军表示,如果科学家想让航天器精确降落在火星上,就需要比现在的全球定位系统精确几个数量级的原子钟,最新研制出的这个原子钟就有望助力实现这一目标。
除此之外,有些量子计算机以单个原子或者分子作为其基本信息处理单元(量子比特),对这些原子或分子进行精准操控将提升量子计算机的性能,原子钟内精确操控单个原子的技术也在此找到了用武之地。
随着原子钟测量精度的进一步提升,科学家有望通过新现象增进对量子物理的理解。而对量子物理的新理解,反过来又可以促进实验技术的发展,让测量精度进一步提高。
叶军表示,原子钟既可作为探索量子力学与引力微妙关联的“显微镜”,也可作为窥探宇宙深渊、追寻引力波与暗物质踪迹的“望远镜”。
从时间流被引力扭曲的无穷小尺度,到暗物质和暗能量占据主导地位的广阔宇宙边界,原子钟早已不是一个计时设备,它已经成为科学家的“慧眼”,帮助他们发现更多新现象,揭示更多未解之谜。
(责编:赵珊)