近日,电子科技大学研究团队首创高迁移率稳定的非晶P型(空穴)半导体器件,突破该领域二十余年的研究瓶颈,进一步推动现代信息电子学和大规模互补金属氧化物半导体(CMOS)技术的发展。该成果由电子科技大学和韩国浦项科技大学共同合作完成,在线发表于《自然》。
相比于多晶半导体,非晶体系具有诸多优势,如低成本、易加工、高稳定性以及大面积制造均匀等。然而,传统的非晶氢化硅因电学性能不足而急需探索新材料。自2004年首次基于非晶N型(电子)铟鎵锌合金氧化物薄膜晶体管(TFT)报道以来,极大推动了半导体电子学和新一代信息显示技术的发展。
但目前,研发性能相当的非晶P型半导体面临着重大挑战,严重阻碍了新型电子器件研发和大规模N-P互补金属氧化物半导体(CMOS)技术的发展。传统氧化物半导体因高局域态价带顶和自补偿效应,导致空穴传输效率极差,难以满足应用需求。科研人员因此投入大量精力开发新型非氧化物P型半导体,不过,这些新材料只能在多晶态下展现一定的P型特性。此外,这些材料还存在稳定性和均匀性等固有缺陷,且难以与现有工业制程工艺兼容。
鉴于此,该团队提出了一种新颖的碲(Te)基复合非晶P型半导体设计理念,并采用工业制程兼容的热蒸镀工艺实现了薄膜的低温制备,证明了在高性能、稳定的P沟道TFT器件和CMOS互补电路中的应用可行性。
通过理论分析,研究团队揭示了由碲5p轨道组成的高分散价带顶和浅能级受体态,为非晶体系下足量的空穴掺杂和有效空穴传输奠定了重要基础。
此外,进一步的研究表明,硒合金化处理可以有效调节空穴浓度,实现了场效应空穴迁移率达到15cm2/Vs和电流开关比约为107的高性能P沟道TFT器件。这些器件展现了良好的偏置应力和环境稳定性,以及晶圆尺度的均匀性。该碲基材料体系在性能上远优于已报道的其他新兴非晶P型半导体材料,并展现出卓越的经济性、稳定性、可扩展性和加工性,其制备工艺与工业生产线和后端集成技术完美兼容。这种复合相策略为设计新一代稳定的非晶P型半导体材料带来了新的启发。
这项研究将推动P型半导体器件的研究热潮,并在建立商业上可行的非晶P沟道TFT技术和低功耗CMOS集成器件迈出了重要的一步。
(责编:赵珊)