人民日报出版社主管 人民周刊杂志社主办

010-65363526rmzk001@163.com
首页 > 栏目 > 科学 > 正文

我国学者实现对类脑语音的识别

吴长锋    2024-04-18 11:53:35    科技日报

记者16日从安徽大学获悉,该校集成电路学院吴秀龙课题组与北京大学杨玉超教授课题组合作,利用动态忆阻器的动力学行为,开发了一种生物学可解释的特征提取单元,用于提取语音事件信号时空特征,并基于此单元成功构建了语音识别硬件系统进行实验验证。相关研究成果日前在线发表于国际学术期刊《科学进展》上。

目前,基于深度学习的语音识别模型,在取得高性能的同时往往依赖于高算力、高存储容量的硬件平台。这使得这些模型往往无法满足移动边缘端对低功耗、低延迟的要求,增加了边缘端计算的复杂度与能耗。脑启发的脉冲神经网络(SNN)是实现低功耗人工智能的重要途径。然而,现有的基于SNN模型的语音识别系统,由于缺乏可以高效地进行声学特征提取和神经编码的听觉前端,导致高性能的语音识别系统,往往依赖于复杂的语音特征提取算法和网络结构复杂的深度脉冲神经网络,这限制了在边缘端的应用。因此,为了优化性能并简化系统架构,急需设计一种高效的听觉前端,以实现基于SNN模型的超低功耗语音识别系统。

针对这一问题,研究人员利用钴酸锂动态忆阻器的非线性动力学特性,设计了硬件DTSN神经元作为听觉前端,提取基于事件的语音信号的时空特征。研究人员通过构建具有可调节衰减时间核的钴酸锂动态忆阻器,实现了硬件动态时间表面神经元(DTSN),其中衰减时间核的结构包括zero-sum时间核和指数时间核两种形式。该神经元具有高效提取音频信号中事件流的时空特征的功能。这不仅增强了脉冲神经网络硬件系统的语音识别性能,而且简化了网络结构复杂度,从而提高了整个硬件系统的计算效率。

研究人员表示,这项工作显著提升了脉冲神经网络硬件系统处理基于事件的语音信号的识别性能,为超低功耗的语音处理硬件系统提供了一种神经形态解决方案,将会推动边缘AI技术在智能语音识别领域的发展。

(责编:赵珊)

相关热词搜索:

上一篇:我国成功发射四维高景三号01星
下一篇:给探测器装上国产“眼睛”

人民周刊网版权及免责声明:

1.凡本网注明“来源:人民周刊网”或“来源:人民周刊”的所有作品,版权均属于人民周刊网(本网另有声明的除外);未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品;已经与本网签署相关授权使用协议的单位及个人,应注意作品中是否有相应的授权使用限制声明,不得违反限制声明,且在授权范围内使用时应注明“来源:人民周刊网”或“来源:人民周刊”。违反前述声明者,本网将追究其相关法律责任。

2.本网所有的图片作品中,即使注明“来源:人民周刊网”及/或标有“人民周刊网(www.peopleweekly.cn)”“人民周刊”水印,但并不代表本网对该等图片作品享有许可他人使用的权利;已经与本网签署相关授权使用协议的单位及个人,仅有权在授权范围内使用图片中明确注明“人民周刊网记者XXX摄”或“人民周刊记者XXX摄”的图片作品,否则,一切不利后果自行承担。

3.凡本网注明“来源:XXX(非人民周刊网或人民周刊)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

4.如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:010-65363526 邮箱:rmzk001@163.com