人民日报出版社主管 人民周刊杂志社主办

010-65363526rmzk001@163.com
首页 > 栏目 > 科学 > 正文

开放光量子行走的高效机器学习成功实现

吴长锋    2024-03-20 11:41:29    科技日报

记者19日从中国科学技术大学获悉,该校郭光灿院士团队在光量子行走领域取得重大突破。他们利用人工神经网络作为开放系统中混合量子态的有效拟设,并通过提高神经网络的训练效率,在具有内禀高维结构的开放光量子行走系统中,首次实现了高保真度混合量子态重构。相关成果日前发表在国际学术期刊《科学·进展》上。

量子行走在量子模拟和量子计算中具有重要研究价值。最近,基于人工神经网络学习开放量子系统的方法在理论上被提出。但随着系统规模不断增加,神经网络要保持对其混合量子态的高表达能力,就需要更为复杂的网络结构。因此,直接应用该方法重构大规模开放量子行走中的演化状态,将面临复杂的网络训练问题。

研究团队构建新型干涉测量装置以显著增加测量基数目,并通过建立开放量子行走系统与受限玻尔兹曼机网络模型之间的映射,以及开发新的梯度优化算法高效训练神经网络,最终完成对具有一定规模的开放量子行走系统中混合量子态的有效表征。

研究显示,仅利用相对于传统态层析方法50%的测量基数目,即可实现平均保真度高达97.5%的开放光量子行走的完整混合量子态表征。同时,采用新算法的神经网络训练迭代次数可以减少一个数量级,并且可以高效规避局域极小值的影响,使损失函数到达更低取值,从而极大提高重构保真度。

研究人员表示,这种高效的神经网络混合量子态层析方法为开放量子行走的广泛应用提供了新的可能性,并为进一步研究噪声辅助的量子计算和量子模拟奠定了基础。

(责编:赵珊)

相关热词搜索:

上一篇:产业向“新” 发展提“质”
下一篇:最后一页

人民周刊网版权及免责声明:

1.凡本网注明“来源:人民周刊网”或“来源:人民周刊”的所有作品,版权均属于人民周刊网(本网另有声明的除外);未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品;已经与本网签署相关授权使用协议的单位及个人,应注意作品中是否有相应的授权使用限制声明,不得违反限制声明,且在授权范围内使用时应注明“来源:人民周刊网”或“来源:人民周刊”。违反前述声明者,本网将追究其相关法律责任。

2.本网所有的图片作品中,即使注明“来源:人民周刊网”及/或标有“人民周刊网(www.peopleweekly.cn)”“人民周刊”水印,但并不代表本网对该等图片作品享有许可他人使用的权利;已经与本网签署相关授权使用协议的单位及个人,仅有权在授权范围内使用图片中明确注明“人民周刊网记者XXX摄”或“人民周刊记者XXX摄”的图片作品,否则,一切不利后果自行承担。

3.凡本网注明“来源:XXX(非人民周刊网或人民周刊)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

4.如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:010-65363526 邮箱:rmzk001@163.com