人民日报出版社主管 人民周刊杂志社主办

010-65363526rmzk001@163.com
首页 > 栏目 > 科学 > 正文

运用可解释机器学习成功破解催化结构敏感性难题

吴长锋     2024-03-20 11:39:16    科技日报

记者19日从中国科学技术大学获悉,该校李微雪教授结合物理启发的可解释机器学习算法与第一性原理计算,解决了一个多相催化研究中长期存在的关于催化结构敏感性难题。研究成果近日发表于《美国化学会》期刊。

催化反应活性位及其结构敏感性是多相催化研究中最为重要的基本概念之一。尽管近年来研究取得了很大进展,但由于影响因素众多并横跨多个空间和时间尺度,如何在原子尺度上确定催化反应的活性位及其结构敏感性,依然是催化材料理性设计中所面临的一大挑战。

机器学习方法在多相催化研究中发挥着日益重要的作用,并被应用到催化剂的结构敏感性研究中。但迄今为止大多数研究都属于端到端的“黑盒子”研究,研究结果缺乏很好的物理可解释性。物理上具有清晰的可解释性,明确包含催化剂的几何结构和化学组分,并能准确预测催化反应能垒的解析关系,目前仍然亟待建立。另外,由于催化反应能垒的计算主要通过高精度、高成本的密度泛函理论来完成,系统的理论数据也较为匮乏。因此,经常需要参考不同的数据源,数据源的多样性所带来的挑战也需要采取合适的机器学习算法。

针对上述问题,研究人员基于物理启发的可解释多任务学习符号回归和包含多样性的第一性原理计算数据集,在领域知识和化学直觉的基础上,建立了一个简洁、物理图像清晰的描述符。该描述符由催化剂的结构项和催化反应的能量项两部分组成,可用于准确预测各种分子在不同组分和结构金属催化剂上的活化能垒。其中,新建立的结构项由催化剂的拓扑配位不饱和度、价电子和晶格常数三个变量组成,借此成功破解了金属催化剂的结构敏感性问题,并突显了数据驱动理论模型的透明度,即“白盒子”研究在构建催化物理模型方面的重要性。

(责编:赵珊)

相关热词搜索:

上一篇:产业向“新” 发展提“质”
下一篇:最后一页

人民周刊网版权及免责声明:

1.凡本网注明“来源:人民周刊网”或“来源:人民周刊”的所有作品,版权均属于人民周刊网(本网另有声明的除外);未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品;已经与本网签署相关授权使用协议的单位及个人,应注意作品中是否有相应的授权使用限制声明,不得违反限制声明,且在授权范围内使用时应注明“来源:人民周刊网”或“来源:人民周刊”。违反前述声明者,本网将追究其相关法律责任。

2.本网所有的图片作品中,即使注明“来源:人民周刊网”及/或标有“人民周刊网(www.peopleweekly.cn)”“人民周刊”水印,但并不代表本网对该等图片作品享有许可他人使用的权利;已经与本网签署相关授权使用协议的单位及个人,仅有权在授权范围内使用图片中明确注明“人民周刊网记者XXX摄”或“人民周刊记者XXX摄”的图片作品,否则,一切不利后果自行承担。

3.凡本网注明“来源:XXX(非人民周刊网或人民周刊)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

4.如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:010-65363526 邮箱:rmzk001@163.com